Fishing for *Phytophthora* in the Waitakere Ranges, Auckland, New Zealand

Landcare Research Manaaki Whenua

Simon D. Randall¹*, Bruce R. Burns¹, Stanley E. Bellgard², and Ross E. Beever²

1 School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand 2 Landcare Research, Private Bag 92170, Auckland 1142, New Zealand

* Corresponding author: sran027@aucklanduni.ac.nz

Introduction

Kauri (*Agathis australis*) is a dominant tree in forests in northern New Zealand (Wardle 1991). A number of species of *Phytophthora* have been detected in these forests including *Phytophthora* 'taxon Agathis' (PTA) and *P. cinnamomi*, both known pathogens of kauri (Gadgil 1974, Beever et al. 2009).

Stream-based sampling has been employed to detect various *Phytophthora* species at a catchment scale in the US and Australia (Murphy et al. 2009, Smith et al. 2009), suggesting that this method may also be effective in detecting *Phytophthora* spp. in kauri forest.

We aim to extend this approach and determine its applicability for detecting the presence of

Phytophthora species in kauri forest by:

- surveying six sub-catchments in the Waitakere Ranges for the presence of *Phytophthora* species using different baits and isolation techniques
- identifying correlations between particular species and environmental and temporal variables.

We will determine whether this approach could be used as a passive surveillance method to detect PTA and *P. cinnamomi* at the catchment level.

Methods

Sample sites

Figure 1. Location of the research sites

Figure 2. Leaf baiting apparatus in situ at the Cascades B site.

Table 1. Sample sites and incidence of kauri ill-health within the associated sub-catchment based on on-track surveys (N Waipara & A Davis pers. comm.)

Site	Sub-catchment	Kauri ill-heath score
1	Cascades A	High
2	Cascades B	High
3	Nihotupu A	Low
4	Nihotupu B	Low
5	Piha A	High
6	Piha B	High

Baits

Five baits (ten replicates) are being used at each site: 3-day-old germinated lupin seedlings (*Lupinus angustifolius* sourced from Rockfield Pty Ltd, Sassafras, Tasmania), and leaves from locally cultivated Himalayan cedar (*Cedrus deodara*), kauri, kohuhu (*Pittosporum tenuifolium*), and rhododendron (*Rhododendron arboreum*).

Culture and Isolation

After leaving out for 2 weeks, the baits are rinsed in reverse osmosis water and plated to selective agar P_5 ARP and/or P_5 ARPH (containing hymexazol to inhibit Pythium spp.) (Erwin & Ribeiro 1996) and incubated at 18°C.

After 3–4 days, oomycete-like colonies are subcultured and sorted into morphotype based on:

- colony morphology on PDA at 20°C after 5 days
- sporangial features after transfer to V8 Agar, and subsequent immersion in non sterile soil extract (NSSE)
- oospores presence after a week on V8 Agar, and features if formed.

Isolates representative of the morphotype identified are being examined by ITS sequencing (Cooke et al. 2000).

Results

Catchment studies

Sample 1 baits taken Oct/Nov (spring) 2009 were plated to P_5ARP (Table 2). *Pythium* spp. were prevalent in this sample, hampering the detection and potential recovery of *Phytophthora* spp. isolates. Thus for Sample 2, baits were plated to P_5ARP and P_5ARPH , and recovery compared (Fig. 4).

Table 2. Comparison of the different morpho-species isolated from the first two samplings.

	Sample 1 (Oct/Nov '09)					Sample 2 (Dec/Jan '10)						
Site Morphotype	1	2	3	4	5	б	1	2	3	4	5	б
I (ITS Clade 2)						•	•	•	•	•		•
II (ITS Clade 6)		•				•			•		•	
III (P. kernoviae)		•			•	•		•			•	
IV (Unknown <i>sp 1</i>)		•						•			•	

The *Phytophthora* species recovered were classified into four groups, based on morphological characteristics and ITS sequencing. Preliminary results indicate Groups I and II could be placed in ITS Clades 2 and 6 respectively. Group III has been determined as *P. kernoviae*. Group IV was not readily placed in the recognised clades. PTA and *P. cinnamomi* were not detected in these samples, although these species are known to be present within at least some of these catchments.

Bait type

Numerous oomycete-like isolates were recovered from all baits. The majority of *Phytophthora* isolates were from rhododendron midrib (Fig. 3). This may be because softer or damaged baits such as lupin radicles and injured Himalayan cedar needles were more prone to infection by *Pythium* spp. These *Pythium* spp. are likely to have prevented *Phytophthora* from being isolated unless the baits processing methods utilized P₅ARPH.

Evaluation of hymexazol

While not all *Phytophthora* spp. are resistant to hymexazol, the two main target species PTA and *P. cinnamomi* are. Therefore we have chosen to use P_5 ARPH as part of our routine analysis. Initial analysis shows that hymexazol was effective, given that when used it resulted in a greater number of isolates of *Phytophthora* spp., and comparatively fewer *Pythium* spp., being retrieved.

Figure 3. Comparison of the number of *Pythium* spp. versus *Phytophthora* spp.for each bait type, across both samples.

Figure 4. Comparison of the number of isolates that were *Phytophthora* spp. and *Pythium* spp. in the presence or absence of hymexazol.

Future work

- Complete full year of bi-monthly sampling
- Compare stream baiting with direct water filtration
- Examine long-term storage options for isolates.

Conclusions

- The sampling thus far demonstrates proof of concept for the use of this method to satisfy the two stated aims, despite PTA not yet being retrieved
- Variation seen in the two samples shows this method will be able to identify correlations between species detected and temporal and spatial variation.

References

Beever RE, Waipara NW, Ramsfield TD, Dick MA, Horner IJ (2009). Kauri (*Agathis australis*) under threat from *Phytophthora*? Pp. 74–85 in: Goheen, E.M.; Frankel, S.J., tech. coords. Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09: Phytophthoras in forests and natural ecosystems. Gen. Tech. Rep. PSW-GTR-221. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.

Cooke DE, Drenth A, Duncan JM, Wagels G, Brasier CM (2000). A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology 30: 17–32.

Erwin DC, Ribeiro OK (1996). Phytophthora diseases worldwide. APS Press, St Paul, 562 p.

Gadgil, PD (1974). *Phytophthora heveae*, a pathogen of kauri. New Zealand Journal of Forestry Science 4: 59–63. Murphy SK, Lee C, Valachovic Y, Bienapfl J, Mark W, Jirka A, Owen DR, Smith TF, Rizzo DM (2009). Monitoring *Phytophthora ramorum* distribution in streams within California watersheds. Pp. 19–26 in: Frankel, S.J.; Kliejunas, J.T.; Katharine M., eds. Proceedings of the sudden oak death 3rd science symposium. General Technical Report PSW-GTR-214. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.

Smith BI, Smith IW, Jones RH, Cunnington J (2009). An evaluation of stream monitoring techniques for surveys for *Phytophthora* species in Victoria, Australia. Pp. 325 in: Goheen, E.M.; Frankel, S.J., tech. coords. Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09: Phytophthoras in forests and natural ecosystems. Gen. Tech. Rep. PSW-GTR-221. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. Wardle P (1991). Vegetation of New Zealand. Cambridge University Press, 672 p. **Acknowledgements**—Auckland Regional Council (ARC) for permission to sample in the Waitakere Ranges Regional Park; Dr Nick Waipara and Alison Davis (ARC) for their guidance in site selection; David Tearne (University of Auckland) for assistance with the field collection; Elsa Paderes (Landcare Research) for assistance in sample processing; Rosie Stoney for field photography; Mathanki Vivekananda for assistance with a preliminary trial; Duckchul Park (Landcare Research) and Dr Tod Ramsfield (SCION) for assistance with ITS analyses.

www.landcareresearch.co.nz